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Low-energy states of self-gravitating systems with finite angular momentum are considered. A constraint is
introduced to confine cores and other condensed objects within the system boundaries by gravity alone. This
excludes previously observed astrophysically irrelevant asymmetric configurations with a single core. We show
that, for an intermediate range of a short-distance cutoff and small angular momentum, the equilibrium con-
figuration is an asymmetric binary. For larger angular momentum or for a smaller range of the short-distance
cutoff, the equilibrium configuration consists of a central core and an equatorial ring. The mass of the ring
varies between zero for vanishing rotation and the full system mass for the maximum angular momentum Lmax

a localized gravitationally bound system can have. The value of Lmax scales as �ln�1/x0�, where x0 is a ratio of
a short-distance cutoff range to the system size. An example of the soft gravitational potential is considered; the
conclusions are shown to be valid for other forms of short-distance regularization.
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I. INTRODUCTION

Despite an abundance of rotating structures in the uni-
verse, the statistical mechanics of these systems is not com-
pletely understood. The nonrotating self-gravitating systems,
as shown by the mean-field �MF� analysis and recently con-
firmed by direct computer simulations, exhibit two phases
�see, for example, Refs. �1–4� and references therein�: A
high-energy “uniform” phase where density contrast is small,
and a low-energy phase consisting of a diluted halo and a
dense core. The structure of the core is determined by a type
of a short-range regularization, which can vary from the ex-
clusion in phase or coordinate space to a small-distance trun-
cation of the interaction potential. At the same time, the
structure of rotating self-gravitating systems, particularly the
form and number of cores or other dense objects in the low-
energy states, remains a subject of discussion. Configurations
such as symmetric and asymmetric binaries and rings �5–8�,
a single spheroidal core with or without an equatorial ring
�10,11�, and a single “asymmetric” core, sliding along the
container wall �12�, have been found in rotating self-
gravitating systems. Among possible reasons for this
plethora of equilibrium configurations, the boundary condi-
tions definitely play an important role. As in the nonrotating
case �see, for example, Ref. �1��, a confining box with re-
flecting walls �to conserve the energy and mass� is essential
for the existence of any equilibrium state. For a rotating sys-
tem, it is natural to require angular momentum conservation
as well and choose an axisymmetric boundary; usually a
spherical container is considered �5,11–13�. However, the re-
flective boundary conditions seem to be the main reason for
the apparent discrepancy between the particle simulations
and the MF results: While a true particle system inevitably
evolves towards an asymmetric single-core configuration
�12�, the states with an arbitrary number of cores and even
rings are predicted by the MF analysis �5–8,11�. To obtain
two- and multicore states, the center of mass of the system is
fixed in the center of the container �5–9�. While in the MF
analysis the center of mass constraint is implemented by re-
moving the dipole terms from the multipole expansions of

density and potential, it is not clear how to fix the center of
mass in a particle simulation. The total momentum and the
center of mass position, unlike the angular momentum, are
not conserved even in a spherical system, when the bound-
aries are reflecting. Due to the ergodicity of a three-
dimensional Coulomb system, even a specially prepared,
highly symmetric initial state �with centrally symmetric co-
ordinates and momenta distribution� will evolve toward the
usually nonsymmetric highest entropy configuration. For a
rotating system, the most probable configuration consists of
the single core sliding along the container wall �9,12�. The
reason why the state with a single core has the highest en-
tropy �or the lowest free energy� is the following: When two
or more initially separated cores merge, the gravitational po-
tential energy decreases, which, for the fixed total energy,
leads to a gain in the translational entropy of the halo. Intu-
itively, as there is no naturally occurring analog of a con-
tainer wall on which the core may slide, this asymmetric
state with a single core looks highly unphysical.

If particle simulations seem unable to reproduce the con-
figurations obtained by the MF methods and exhibit only a
physically irrelevant state with a single core, is there any
other way to validate the MF results? The criteria of physical
relevance, which the asymmetric state with a single core
does not satisfy, are rather intuitive and can be formulated as
follows: The physically relevant equilibrium states of rotat-
ing systems must be affected by the boundary conditions in
the least possible way. This minimal boundary condition ef-
fect is attained in the case of the core-halo states of nonro-
tating self-gravitating systems: If a container surrounding
such system is removed, the halo will start to evaporate,
while the core will remain almost intact for a considerable
time �see Ref. �14� for an estimate of core-halo thermaliza-
tion rate�. On the contrary, the rotating asymmetric state with
a single core would undergo significantly more dramatic
changes if the container were removed: The core, no longer
being supported by the container wall, will escape ballisti-
cally with nothing left within the system boundaries. Simi-
larly to the nonrotating case, the minimal boundary condition
effect can be attained in rotating systems if cores �or other
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condensed objects such as disks or rings� are confined within
the system boundary by gravity alone. In the limit of the
ground-state energy �or zero temperature�, such a state will
consist only of the gravitationally bound condensed parts,
unaffected by the removal of the container at all.

In this paper we consider such weakly interacting with
container, or “physically relevant” states of rotating self-
gravitating systems. To satisfy the relevance criteria sug-
gested above, one needs to find core orbits in the presence of
a halo. To simplify this task, we consider the limit of ground-
state energy �or zero temperature� in which the gaseous halo
is condensed into the cores, and there is no internal motion
of core particles. The only motion in this limit is the macro-
scopic movement of cores, specified by the angular momen-
tum constraint. For sufficiently low energies, the state with
the lowest ground-state energy is the thermodynamically
equilibrium one �while the other mechanically stable states
are thermodynamically metastable�. Thus, to determine a
core structure of the physically relevant low-energy equilib-
rium state, it is sufficient to find a gravitationally bound core
configuration with the lowest energy of a given mass, size,
and angular momentum.

The number of candidates for the lowest energy core state
can be significantly reduced using the following heuristic
argument. The energy of an ensemble of rotating cores is
minimized when the mass is concentrated into the largest
core. This is so because, for sufficiently small short-range
cutoff, the total energy of a rotating self-gravitating system is
dominated by the negative gravitational self-energy of the
cores. The absolute value of gravitational self-energy of a
core grows with the core mass faster than linearly for all
reasonable forms of short-range cutoff. Hence, the energy is
minimized by a configuration which consists of the principal
core of the maximum possible mass, while the remaining
mass is distributed to carry the given angular momentum in
the most energy-efficient way. For this reason, the particle
system in simulations always evolves towards the asymmet-
ric configuration consisting of the single core which carries
all the angular momentum itself �12�. Without a constraint
that the system has to occupy a finite volume, the lowest-
energy state would have consisted of a core containing all
but one particle, with that particle having an orbit radius
defined by the angular momentum constraint. Likewise, with
the spatial localization constraint, the most mass- and
energy-efficient way to carry the given angular momentum is
to put the smallest possible mass on a circular orbit of the
maximum allowed radius. Being evident for a two-body sys-
tem �see, for example, Ref. �15��, the energy efficiency of
circular orbits can be seen from the following argument: If a
circular orbit is perturbed by adding a radial component to
the velocity, the angular momentum is unchanged while the
energy increases. Below, we consider two possible configu-
rations consisting of the principal core and the remaining
mass on a single circular orbit: A central core with a ring of
N orbiting cores and a binary, generally asymmetric. A sym-
metric binary is a limiting case of both families. Examples
are abundant in the universe and have been observed in the
MF analysis �5,7� as possible equilibrium or metastable con-
figurations. Other mechanically stable rotating core configu-
rations that do not belong to these two families apparently

have less mass concentrated into the largest core, and thus
have higher energy.

Using simple mechanics, we will derive that the choice of
the lowest energy state depends on the range of a short-range
�or high-density� regularization and the angular momentum.
For an intermediate range of the small-distance regulariza-
tion and small angular momentum, the binary state has the
lowest ground-state energy, which confirms the results of
Ref. �8�. In a limit of the vanishing range of the cutoff, or for
the higher angular momentum, the core-ring state becomes
the equilibrium one. The paper is organized as follows: After
this introduction we define the model more formally. In Sec.
III we compare the ground-state energies of two families of
systems: A central core with a multicore ring, and an asym-
metric binary. A discussion and conclusion section completes
the paper.

II. DEFINITION OF THE MODEL

Let us now formally define the model. We search for the
lowest-energy state of a system of M �1 self-gravitating unit
mass particles with fixed total angular momentum L local-
ized within a sphere of radius R. To make the problem ana-
lytically tractable, we will limit our consideration to the case
when the range of small-distance �high-density� regulariza-
tion is short. Hence, the volume of all condensed objects in
the ground state is considered to be negligible compared to
the volume of the system. In addition, to make a clear dis-
tinction from the nonrotating case, we focus our attention on
the sufficiently high values of angular momentum L to ex-
clude the configuration with the single spinning central core.
Most of the analysis below is for a system of classical par-
ticles interacting via the attractive soft Coulomb potential
−�r2+r0

2�−1/2 �the gravitational constant is set to be unity�.
This simple form of short-range regularization is qualita-
tively equivalent to other forms of “softening,” such as trun-
cation of the Fourier or spherical harmonic expansions. For
an interparticle distance r smaller than the respective soften-
ing radius �given by r0, or by a wavelength of the highest
untruncated harmonic function�, all soft potentials tend to a
harmonic oscillator potential. Consequently, for all soft po-
tentials a condensed core with no particle motion �at zero
temperature� is a pointlike object. This is different from, for
example, the ground state of a system of fermions or hard
core particles with the finite core volume. Qualitative argu-
ments will be given to show that conclusions made for the
system with soft potential also hold for systems with other
forms of short-range regularization.

In addition to the notations r , E, and L for distance, en-
ergy, and absolute value of angular momentum, in the fol-
lowing we will also use the rescaled �universal� units for
distance x, energy �, and angular momentum � �see, for ex-
ample, Refs. �1,3,5��

x �
r

R
,

� �
ER

M2 ,
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� �
L

�M3R
. �1�

III. CORE-RING AND ASYMMETRIC BINARIES

First consider a ring, i.e., a system of N identical cores
�point masses in the case of a soft potential� of mass M /N
each moving on a circular orbit of radius r�R. Assume that
the softening radius r0 is much smaller than the distance
between the neighboring cores, and the interaction between
cores can be considered a bare gravitational one.

Mechanical equilibrium requires the centripetal accelera-
tion of each core to be equal to the total force exerted on it
by the others

�2r = �
i=1

N−1
M cos��� − �i�/2�
2Nr2�1 − cos �i�

, �2�

with �i=2�i /N. This gives the angular momentum of the
system

L2 = M3r
1

4N �
i=1

N−1
1

sin��i/N�
→

N→	
M3r

ln N + C

2�
, �3�

where for large N the sum is replaced by an integral. This
asymptotic expression turns out to be quite robust �less than
4% off, even for N=2�, and the small numerical value of the
constant C�0.126 makes C negligible even for few-core
systems.

It follows from �2� and �3� that a binary system �N=2�
localized within a sphere of radius R cannot have rescaled
angular momentum higher than

�bin = 1/�8 � 0.35. �4�

In a ring, the number of ring cores grows as N	exp�2��2�
for large �. The increase of N, however, cannot continue
indefinitely: For the interaction between cores to be similar
to the bare gravitational potential −1/r, the distance between
cores should be larger than the softening radius r0. Hence,
when the number of cores exceeds the corresponding limit
N
Nmax�2�r /r0, the cores may still get closer to each
other, while the maximum force acting on each core saturates
at the corresponding to Nmax value. Consequently, the maxi-
mum angular momentum of a self-gravitating system with
radius not greater than R is

�max �� ln�R/r0�
2�

=�
ln x0

2�

. �5�

Qualitatively similar estimate for the maximum angular mo-
mentum �max exists for systems with finite-size cores, such
as those formed by ensembles of fermions or hard-core par-
ticles. For such systems, the maximum number of cores Nmax
corresponds to a merging of cores into a continuous �finite-
volume� ring or torus. The radius of the body of the torus rc
�which is of the order of the radii of cores before merging�,
serves the role of a cutoff parameter r0 in �5�. This conclu-
sion can also be reached using the following argument: One

can split a continuous ring into Nmax segments of size 	rc
and consider the interaction between them in the multipole
expansion. The monopole-monopole interaction gives rise to
the leading logarithmic term in �3� and �5�, while the higher-
order terms produce only O�rc /R�0 corrections.

Let us now consider a core-ring system consisting of a
single central core of mass M�1−�� and a ring of mass M�
consisting of N�2 cores. This structure, sketched in Fig. 1,
resembles the planet Saturn with its ring.

Similarly to Eq. �3�, the equation of motion for an orbiting
core yields, for the angular momentum of the system

L2 = M3r�2��
ln N

2�
+ �1 − ��� . �6�

The total energy of the core-ring system consists of the
gravitational self-energies of the central core and orbiting
cores, and the energy of macroscopic rotation

� = −
�1 − ��2

2x0
−

�2

2Nx0
−

�3��ln N/�2�� − 1� + 1�2

2�2 . �7�

To find the ground-state energy, this expression must be
minimized with respect to � and N, 2�N�1/x0, taking into
account the r�R constraint, which has the form

�2�1 − � + �
ln N

2�
� � �2. �8�

For sufficiently small x0, the first term in �7� is the dominant
one. Hence, the minimum energy is reached when N is in-
creased to its saturation value N	1/x0 to minimize the rela-
tive ring mass � within the range allowed by �8�. This is
illustrated by the example presented in Fig. 2. The ground-
state energy of the core-ring configuration with the angular
momentum �� ln N /2� is

�c-r = −
�1 − ��2

2x0
−

�2

2
−

�

2
��
ln x0


2�
+ 1 − �� , �9�

where ���� is the minimal ring mass allowed by �8� and N
=1/x0.

FIG. 1. A sketch of a central core-ring system.
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The mass distribution of the ground states of the core-ring
systems with other forms of cutoff is similar. The self-energy
of a spherical core of m particles can be expressed as Eself

HC

=−CHCm5/3 and Eself
F =−CFm7/3 for systems of hard-core par-

ticles and fermions, respectively �see Ref. �16� for the energy
of self-gravitating fermion ball�. The constants CHC and CF,
which depend on the hard-core radius and the number of
internal degrees of freedom, play the role of 1 /r0 in �9�. For
sufficiently large values of these constants �or equivalently,
sufficiently small cores�, the self-energy of the central core
dominates over the self-energies of the ring cores and the
energy of macroscopic motion. Hence, for a reasonable form
of the short-range cutoff, the lowest energy core-ring con-
figuration consists of the central core of the largest possible
mass allowed by the localization constraint, and the orbiting
ring of the system radius R which carries all the angular
momentum.

Now let us consider a generally asymmetric binary �8� as
another candidate for the lowest energy configuration with a
moderate angular momentum ��bin �4�. Introducing an
asymmetry parameter 0�1/2 and the core separation r
�2R, denote the core masses and orbit radii as M1=�M,
M2= �1−��M, r1= �1−��r, and r2=�r, correspondingly. The
total energy consists of the energy of rotation and the gravi-
tational self-energy of the cores, and reads in rescaled units

� = −
���1 − ���3

2�2 −
�1 − ��2 + �2

2x0
. �10�

To find the ground-state energy, this expression has to be
minimized with respect to � while taking into account the
constraint that the radius of the largest orbit r1 should not
exceed R

�2�1 − �� � �2. �11�

For all reasonable values of x0 �x032�2 /3�, the gravita-
tional self-energies of the cores dominates the total energy �
in Eq. �10�. Hence, the energy is minimized

�bin = −
��1 − ��2

2
−

�1 − ��2 + �2

2x0
, �12�

with the highest possible asymmetry, or the smallest possible
value of ��1/2 allowed by �11�. The same is true for other
forms of short-range regularization: Since the self-energy of
a self-gravitating core grows faster than linearly with the
core mass, a binary with the highest possible asymmetry will
always have the lowest energy.

This confirms the conclusion made in Ref. �8� that for low
energy an asymmetric binary has a higher entropy than a
symmetric one, albeit with the restriction that orbits in a
binary are gravitationally supported only for ��bin.

To compare the ground-state energies of core-halo and
asymmetric binary configurations, the cubic equations �8�
and �11� have to be solved for a given angular momentum
���bin, and the resulting � and � are to be substituted into
the expressions for energy �9� and �12�. For sufficiently small
cutoff radius x0�1, the self-energies of the cores, described
by the first terms in �9� and �12�, give dominant contributions
to the total energy. Qualitatively, when the cutoff radius is
still not too small, so that 
ln x0
 /2��1, the logarithmic term
in �8� is negligible and ���. In this case, due to the notice-
able contribution of the self-energy of the smaller core,
−�2 /2x0, the binary system has the lowest energy. On the
other hand, if 
ln x0
 /2��1, the logarithmic term dominates
in �8� and ��. In this case, the self-energy of the bigger
central core of the core-ring system becomes smaller than the
self-energies of both binary cores, and the core-ring system
is the equilibrium one. The � dependence of the binary and
core-halo energies in the borderline case of x0�10−7 is illus-
trated in Fig. 3. Hence, for x010−7, the core-ring configu-
ration is the equilibrium one for all values of angular mo-
mentum �, while for x0
10−7 there exists a range of �
��bin for which the binary system is the equilibrium one.
Naturally, the energies of the core-ring and binary configu-
ration coincide for �=0 where both configurations are re-
duced to just one central core.

IV. DISCUSSION AND CONCLUSION

In the previous sections we considered the low-energy
equilibrium states of rotating self-gravitating systems and ar-
rived at the following conclusions.

FIG. 2. Contour plot of � vs � and N, defined by the Eq. �7� and
constraint �8� for �=0.5 and x0=10−3. The energy decreases �in-
creases by absolute value� from dark to light, and reaches its mini-
mum at the largest possible N, N=1/x0=1000 and the smallest a
allowed by �8�, ��0.49. The black area corresponds to values of �
and N which do not satisfy the localization constraint r�R �8�.

FIG. 3. �Color online� Plot of the rescaled ground-state energies
of core-ring �c-r �solid line� and asymmetric binary eb �dashed line�
configurations vs angular momentum � for x0=10−7.
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To set a distinction between the physically relevant and
irrelevant states, we suggested that the core part of the rel-
evant states has to be moving on gravitationally supported
orbits and not come in contact with the system boundary. In
the low-energy or zero-temperature limit, such equilibrium
states become localized core-only states and can exist with-
out a container.

We found that, depending on the range of the short-
distance regularization and the angular momentum, two pos-
sibilities exist for the equilibrium configurations of rotating
self-gravitating systems: For an intermediate range of short-
distance cutoff and small angular momentum L��M3R /8,
an asymmetric two-core binary configuration has the lowest
ground-state energy and thus is the equilibrium one �8�. For
L
�M3R /8, or for a very small range of the cutoff and
arbitrary angular momentum, the equilibrium configuration
consists of a central core and an equatorial ring.

The precise value of the cutoff range at which these two
configurations have the same ground-state energy depends
on the nature of the cutoff. For the soft-core interaction po-
tential, the crossover between two ground states takes place
when the softening radius r0 satisfies R /r0�107. For other
forms of regularization, the role of r0 is played by the radius
of the body of the ring, or the radii of multiple “cores” that
constitute the ring. The maximum angular momentum of a
localized self-gravitating system scales as

Lmax →
r0/R→0

�M3R ln�R/r0�
2�

.

In this limit the central core vanishes and the system consists
only of a ring.

It would be desirable to check these conclusions by either
particle simulations or the mean field analysis. Unfortu-
nately, at this stage, none of these seems feasible. As shown
in Ref. �12� and discussed in the Introduction, any finite-
temperature particle simulations will lead to the physically
irrelevant configuration with the single core sliding along the
container wall. Another obstacle lies in the size of such a
computation: To be able see the crossover between the binary
and core-ring system one needs a ring consisting of �107

cores, each consisting of at least one particle. A similar re-
quirement on spatial resolution makes the mean field calcu-
lations very challenging too. Indeed, even the existing calcu-
lations with fairly large cutoff �5–8� may not have enough
mesh points to resolve the core structure �17�. However, the

predicted crossover ratio R /r0�107 is not at all astrophysi-
cally irrelevant and may be encountered in the planetary
disks and even Saturn rings. Given that the typical radii of
rings around the big planets of the solar system is of the
order of 105 km �18�, the dominant presence of ring particles
of the size of 1 cm and less will make the core-ring configu-
ration thermodynamically more stable than the binary one.

The present consideration of the core-ring structure is
rather schematic and at the current level does not allow us to
explain the fine structure of rings as gaps and spikes. Neither
is the Roche limit, which may set another bound on the ex-
istence of the low-orbit self-gravitating binaries due to the
tidal interaction, considered. Yet, even the present level of
modeling of core-ring structures permits one to make impor-
tant thermodynamical predictions, and a distinction between
the existing core-ring models. For example, the central core-
ring ground-state configuration considered here may look
similar to the core-ring configuration found for the system of
fermions with fixed angular velocity in Ref. �11�. However,
this similarity is only superficial: The ring observed in Ref.
�11� is formed by particles which could not be supported
gravitationally at the equator of the central core and were
shedded off to the container wall, while in our case the ring
is supported only gravitationally.

Finally, it is interesting to speculate on up to what energy
or temperature does the correspondence between the equilib-
rium and lowest ground-state energy configurations hold? In-
deed, as the energy increases and the mass of the halo be-
comes comparable or exceeds the combined mass of
condensed objects �cores and rings�, most of the angular mo-
mentum is carried by the halo. This may lead to a reduction
and complete disappearance of a ring. This scenario looks
especially plausible if the angular momentum is noticeably
smaller than Lmax, so a gravitationally supported structure
with smaller moment of inertia than that of an equatorial ring
can carry it. In addition to numerical methods, this scenario
can be analyzed analytically by approximating a halo as a
uniform gas, as done by Chavanis �19� in the case of a non-
rotating state. We leave this analysis for future research.
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